Glass ingredients
Pure silica (SiO2) has a "glass melting point"— at a viscosity of 10 Pa·s (100 P)— of over 2300 °C (4200 °F). While pure silica can be made into glass for special applications (see fused quartz), other substances are added to common glass to simplify processing. One is sodium carbonate (Na2CO3), which lowers the melting point to about 1500 °C (2700 °F) in soda-lime glass; "soda" refers to the original source of sodium carbonate in the soda ash obtained from certain plants. However, the soda makes the glass water soluble, which is usually undesirable, so lime (calcium oxide (CaO), generally obtained from limestone), some magnesium oxide (MgO) and aluminium oxide (Al2O3) are added to provide for a better chemical durability. The resulting glass contains about 70 to 74% silica by weight and is called a soda-lime glass.[8] Soda-lime glasses account for about 90% of manufactured glass.
As well as soda and lime, most common glass has other ingredients added to change its properties. Lead glass, such as lead crystal or flint glass, is more 'brilliant' because the increased refractive index causes noticeably more "sparkles", while boron may be added to change the thermal and electrical properties, as in Pyrex. Adding barium also increases the refractive index. Thorium oxide gives glass a high refractive index and low dispersion, and was formerly used in producing high-quality lenses, but due to its radioactivity has been replaced by lanthanum oxideUV wavelengths (biologically damaging ionizing radiation). in modern eye glasses. Large amounts of iron are used in glass that absorbs infrared energy, such as heat absorbing filters for movie projectors, while cerium(IV) oxide can be used for glass that absorbs
Two other common glass ingredients are calumite (an iron industry by-product) and "cullet" (recycled glass). The recycled glass saves on raw materials and energy. However, impurities in the cullet can lead to product and equipment failure.
Finally, fining agents such as sodium sulfate, sodium chloride, or antimony oxide are added to reduce the bubble content in the glass.[8] Glass batch calculation is the method by which the correct raw material mixture is determined to achieve the desired glass composition.
[edit] Contemporary glass production
Following the glass batch preparation and mixing, the raw materials are transported to the furnace. Soda-lime glass for mass production is melted in gas fired units. Smaller scale furnaces for specialty glasses include electric melters, pot furnaces, and day tanks.[8]
After melting, homogenization and refining (removal of bubbles), the glass is formed. Flat glass for windows and similar applications is formed by the float glass process, developed between 1953 and 1957 by Sir Alastair Pilkington and Kenneth Bickerstaff of the UK's Pilkington Brothers, who created a continuous ribbon of glass using a molten tin bath on which the molten glass flows unhindered under the influence of gravity. The top surface of the glass is subjected to nitrogen under pressure to obtain a polished finish.[9] Container glass for common bottles and jars is formed by blowing and pressing methods. Further glass forming techniques are summarized in the table Glass forming techniques.
Once the desired form is obtained, glass is usually annealed for the removal of stresses. Surface treatments, coatings or lamination may follow to improve the chemical durability (glass container coatings, glass container internal treatment), strength (toughened glass, bulletproof glass, windshields), or optical properties (insulated glazing, anti-reflective coating).
No comments:
Post a Comment